Letters to the Editor NMR assignment of new Thioredoxin-like protein YkuV from *Bacillus subtilis* DOI 10.1007/s10858-005-7195-6 YkuV (148 amino acids) from *Bacillus subtilis* is identified as a new thioredoxin-like protein based on sequence homology. Thioredoxin is a ubiquitous protein, which serves as a general protein disulfide oxidoreductase (Holmgren, 1985). Bioinformatics analysis of YkuV shows that protein ResA shares the most homologous in PDB database (19% identity), which is the soluble domain of a membrane-anchored protein. (Craw et al., 2004). We report the nearly complete ¹H, ¹³C and ¹⁵N resonance assignments of YkuV. 2D and 3D heteronuclear NMR experiments were performed with uniformly ¹⁵N-, ¹³C-labelled YkuV. More than 97% backbone and 90% side-chain ¹H, ¹³C and ¹⁵N resonance assignments are obtained with the exception of residues H42, S131, M133 and K134. BMRB deposits with accession number 6603. References: Holmgren (1985) *Annu. Rev. Biochem.*, **54**, 237–271; Craw et al. (2004) *J. Biol. Chem.*, **279**, 23654–23660. Xinxin Zhang^{a,b}, Caifang Yu^c, Bin Xia^{a,b} & Changwen Jin^{a,b,*} ## $^1H,\ ^{15}N,\ and\ ^{13}C$ resonance assignments of human interleukin-2 DOI 10.1007/s10858-005-7952-6 Interleukin-2 (IL-2) is a cytokine consisting of 133 residues, which governs the growth, activation, and differentiation of T cells. Inhibition of IL-2 is an ongoing strategy for the discovery of immunosuppressive drugs, and NMR structural studies can provide guidance. The site on IL-2 that interacts with IL-2R α has been mapped (Emerson et al., 2003). Small molecule inhibitors have been discovered that bind to this site. To date, only ^{1}H and ^{15}N chemical shift values have been obtained for IL-2 (Mott et al., 1992). ^{13}C assignments will be essential for detailed structures and dynamics. ^{13}C , ^{15}N -labeled human IL-2 was produced in the yeast *Pichia pastoris*. All ^{1}H , ^{15}N , and ^{13}C chemical shift assignments for the aliphatic resonances of IL-2 are herein reported, with the following exceptions: the ^{15}NH of Asn77; the $^{13}C\alpha$'s of Lys64, Ser75, and Arg81; and portions of the side-chains of Ser4, Asp20, Cys58, Lys64, Cys105, and Glu110. BMRB accession number 6621. References: Emerson et al. (2003) Protein Sci., 12, 811-822; Mott et al. (1992) Biochemistry., 31, 7741-7744. David C. Fry^{a,*}, S. Donald Emerson^b, Chao-Min Liu^a & Robert Palermo^c ^aBeijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China; ^bCollege of Life Sciences, Peking University, Beijing, 100871, China; ^cDepartment of Chemistry, Beijing Normal University, Beijing, 100875, China ^{*}To whom correspondence should be addressed. E-mail: changwen@pku.edu.cn **Supplementary material** to this paper is available in electronic format at http://dx.doi.org/10.1007/s10858-005-7195-6. ^aRoche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey, 07110, U.S.A; ^bPfizer Inc., 2800 Plymouth Road, Ann Arbor, MI, 48105, U.S.A; ^cSchering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ, 07033, U.S.A ^{*}To whom correspondence should be addressed. E-mail: david.fry@roche.com Supplementary material to this paper is available in electronic format at http://dx.doi.org/10.1007/s10858-005-7952-6.